Parametrically Excited Dynamic Bipedal Walking
نویسندگان
چکیده
Human biped locomotion is an ultimate style of biological movement that is a highly evolved function. Biped locomotion by robots is a dream to be attained by the most highly evolved or integrated technology, and research on this has a history of over 30 years. Many methods of generating gaits have been proposed. There has been a tendency to reduce the complicated dynamics of a walking robot to a simple inverted pendulum (Hemami et al., 1973), and to control its motion according to pre-designed time-dependent trajectories while guaranteeing zero moment point (ZMP) conditions (Vukobratovi & Stepanenko, 1972). Although such approaches have successfully been applied to practical applications and nowadays successful biped-himanoids are developed by them, problems on gait performances still remain. Several advanced approaches on the other hand have taken the robot's dynamics into account for generating gaits based on natural dynamics. Miura and Shimoyama studied dynamic bipedal walking without ankle-joint actuation (Miura & Shimoyama, 1984) and they developed robots on stilts whose foot contact occurred at a point. Sano and Furusho accomplished natural dynamic biped walking based on angular momentum using ankle-joint actuation (Sano & Furusho, 1990). Kajita proposed a method of control based on a linear inverted pendulum model with a potential-energy-conserving orbit (Kajita et al., 1992). These approaches utilized the robot’s own dynamics effectively but did not investigate the energy-efficiency by introducing performance indices. It was unclear whether or not efficient gaits were generated. McGeer's passive dynamic walking (PDW) (McGeer, 1990) has provided clues to solve these problems. Passive-dynamic walkers can walk without any actuation on a gentle slope, and they provide an optimal solution to the problem of generating a natural and energy-efficient gait. The objective most expected to be met by PDW is to attain natural, high-speed energyefficient dynamic bipedal walking on level ground like humans do. However, we need to supply power-input to the robot by driving its joint-actuators to continue stable walking on level ground, and certain methods of supplying power must be introduced. Ankle-joint torque is mathematically very important for effectively propelling the robot's center of mass (CoM) in the walking direction, and it is thus required relatively more often than other joint torques. However, to exert ankle-joint torque on a passive-dynamic walker, we need to add feet and this creates the ZMP constraint problem. We clarified that there is a trade-off between optimal gait and ZMP conditions through parametric studies, and O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m
منابع مشابه
Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking
For stable bipedal gait generation on the level floor, efficient restoring of mechanical energy lost by heel collision at the ground is necessary. Parametric excitation principle is one of the solutions. We dealt with the robot’s total center of mass as an inverted pendulum to consider the total dynamics of the robot. Parametrically excited walking requires the use of continuous target trajecto...
متن کاملStability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators
This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...
متن کاملAn efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کاملDevelopment of a Bipedal Humanoid Robot: Control Method of Whole Body Cooperative Dynamic Biped Walking
The authors have focused on the bipedal humanoid robot expected to play an active role in human living space, through studies on an anthropomorphic biped walking robot. As the first stage of developing a bipedal humanoid robot, the authors developed the human-size 35 active DOF bipedal humanoid robot “WABIAN” and the human-size 41 active DOF bipedal humanoid robot “ WABIAN-R”. The authors also ...
متن کاملGait Regulation for Bipedal Locomotion
This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on po...
متن کامل